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Abstract

Machine learning (ML) is a fundamental concept in the field of state-of-the-art artificial intelligence (AI). Over the
past two decades, it has evolved rapidly and been employed wildly in many fields. In medicine the widespread
usage of ML has been observed in recent years. The present review examines various ML approaches for
electroencephalograph (EEG) signal procession in epilepsy research, highlighting applications in the aspect of
automated seizure detection, prediction and orientation. The present review also presents advantage, challenge
and future direction of ML techniques in the analysis of EEG signals in epilepsy.
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Background and concept
Machine learning (ML), a foundation in the domain of
artificial intelligence (AI), has evolved greatly over the
last 20 years. ML leverages statistical and computer sci-
ence principles and systematically uses algorithms to un-
veil the hidden characterize and intrinsic connection of
data [1]. Widespread use of ML is observed in many
fields (e.g. speech recognition, image pattern recognition,
web search, spam mail filtering, autopilot). In medicine,
ML increases accuracy of prediction and detection of a
certain disease as well as evaluation of the prognosis. For
biomedical data ML renders principled, automatic and ob-
jective algorithms for high-dimensioned and complicated
data [2]. For example ML shows its advantages in gene se-
lection compared to application of classical feature selec-
tion method.
The destination of ML is to recognize uncharted areas,

and make predictions for some upcoming events. The
computational feature of ML is to output a hypothesis
through the training experience (or examples) by

mathematical algorisms [1]. ML tasks may broadly be
organized in two main branches: supervised or unsuper-
vised [3]. The former receives prelabeled inputs and
aims to converge to the most optimized classifier via an
algorithm which is “trained” for the classification of un-
labeled data [4]. Compared to the supervised method,
the unsupervised algorithms (e.g. clustering and dimen-
sionality reduction algorithms) are referred to the process
of establishing mathematical models after analyzing the
similarities among unlabeled inputs to uncover trends, sub-
groups, or outliers [5]. Semi-supervised learning operates
between the concepts of supervised and unsupervised
learning, learning a small number of labeled datasets with
combination of a large number of unlabeled datasets, to
generate a classifier (or model function). To some degree, it
produces substantial improvement in learning accuracy [6].
Reinforcement learning is one of the cutting-edge tech-
niques in dynamical systems (e.g. evolving, time varying
system, power system), by automatically learning of optimal
control strategies [7]. “Reinforcement” denotes that good
actions are positively reinforced while bad ones are de-
graded, so as to approaching optimal strategy. Deep learn-
ing, as one category of ML methods, is built on
representation learning, the system of which is to
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automatically learn and discover patterns for a classifier
from multiple layers of input data [8]. Ensemble learning
integrates several learning models (such as neural networks,
support vector machines and Bayesian techniques), and
trains independently or collaboratively on the input data
[9]. Figure 1 illustrates some popular ML algorithms.
Electroencephalograph (EEG) as a primary tool for

brainwave recording plays a fundamental role of epilepsy
research. EEG mainly includes scalp EEG and intracra-
nial EEG (IEEG), depending on where the electrodes
place. Scalp EEG shows oscillations at a variety of fre-
quencies, focusing on the frequency range 0.5–25 Hz in
clinical visual inspection. By contrast the IEEG carries
higher frequencies, indicating more relevant information
for analysis. EEG is characterized by high-dimensional
spatio-temporal features, which sometimes cannot be
well processed with conventional statistical methods. In
this context, state-of-the-art ML methods are feasible to
handle high-dimensional EEG signals which later aggre-
gate into patterns for classification. Figure 2 illustrates
some steps of ML in EEG procession.

ML application for EEG signals in epilepsy
Automated seizure recognition
Seizure detection refers to the identification of seizures
shortly before or after the actual onset. Traditionally,
direct visual inspection is employed by neurologists to
identify and classify EEG abnormities. However manual
labeling of EEG signals is time-consuming and some
mistakes are not avoidable. Research on seizure recogni-
tion began in the 1970s and considerable effort has been
made for that in EEG recordings. Reliable automated
seizure detection poses challenges due to numerous rea-
sons. For example, EEG pattern of seizure varies greatly
across patients or even within one patient when seizure
arises from different brain areas. Given the automatic
detection process is for the purpose of preventive mea-
sures for seizure occurrence, shorten the latency of de-
tection is pivot, which requires rapid effective processing
on dynamic evolution of multiple EEG channels. Most
of early studies demonstrate suboptimal results, such as
false alarm rates and high latencies. Among various
methods addressing the problem, it is believed that AI
techniques can rival expertise level in EEG reading.
Kharbouch et al. developed a real-time seizure detection

system on intracranial electrodes by using ML methods
[10]. Shoeb et al. used spectral energy (< 37Hz) of intracra-
nial IEEG to detect the seizure onset by training support
vector machine (SVM, linear and nonlinear) to differenti-
ate between a patient’s seizure and non-seizure activity
[11]. In that study patient-specific detector (SVM) detected
60/61 seizures, which outperforms patient non-specific al-
gorithm (Osorio-Frei seizure detector), with 55/61. Shoeb
et al. also developed SVM using spatial and spectral

properties of a scalp EEG epoch for detecting the termin-
ation of seizure activity [12]. Temko et al. assessed existing
metrics and proposed SVM-based seizure detection system
for EEG-based neonatal seizures [13]. Fergus et al. used k-
class nearest neighbor classifier to seizure detection using
scalp EEG, with a sensitivity of 93% and specificity of 94%
[14]. Hassan and Subasi decomposed single-channel EEG
signal by using complete ensemble empirical mode de-
composition with adaptive noise, and then implemented
an ensemble learning (linear programming boosting) to
perform good classification of epileptic seizures [15].
Ansari et al. introduced an improved neonatal seizure de-
tector using a SVM method with radial basis kernel func-
tion, which is suggested applicable for other neonatal
seizure detectors [16]. Jaiswal et al. proposed two effective
approaches for EEG feature extraction involving subpat-
tern based PCA and cross-subpattern correlation-based
PCA, incorporated with SVM for automated seizure de-
tection [17]. By extracting varying features based on time
and frequency domain features, Hussain compared several
ML methods (SVM, K-nearest neighbor classification
[KNN], decision tree, ensemble) to detect the epileptic
seizure, and showed that overall highest accuracy was
found in SVM, KNN [18]. Sendi et al. presented a Spark-
based ML approach (SVM based) for solving the seizure
detection problem by using linear dimensionality reduc-
tion and classification. They achieved an average accuracy
of 99.32%, sensitivity of 99.41%, specificity of 95.25%
across all patients (N = 24). The mean latency of their seiz-
ure detection method was about 0.38ms [19]. Recently
more advanced ML methods have been reported. Wei
et al. applied 3D convolutional neural networks (CNN)
framework in detecting seizures from EEG with an accur-
acy of over 90%, a sensitivity of 88.9% and a specificity of
93.8%, which show superiority to 2D CNN and traditional
methods [20]. Also without the need of feature extraction,
Akut introduced a wavelet based deep learning approach
which performed well on small datasets [21].
Besides seizure detection, epileptic EEG signal and

seizure classification can also be resolved by using ML
methods. For example, Muthanantha Murugave pro-
posed a novel multiclassification scheme for epileptic
EEG signal classification by combining both the hier-
archical multi-class SVM and extreme learning machine
(ELM) framework, indicating its efficiency in terms of
higher classification accuracy at a shorter execution time
[22]. Acharya et al. firstly employed the CNN(13-layer)
analysis of EEG signals to achieve high accuracy, specifi-
city, and sensitivity of seizure detection and classification
[23]. Jiang et al. integrated transductive transfer learning,
Takagi-sugeno-kang (TSK) fuzzy system and semi-
supervised learning for outstanding performance of seiz-
ure classification [24]. Two novelty in their study in-
cluded: 1) Transfer learning, which was used for reduce
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Fig. 1 Common ML algorithms. a Support vector machine (SVM), a widely used supervised learning method, generates a hyperplane in higher-
dimensional feature space to maximize the largest minimum distance between the separate labeled support vectors. b K-nearest neighbor
classification (KNN), a instance-based learning (lazy learning), classifies objects on the based of closet training data in feature space by assigning a
label based on the most dominant class of its k nearest neighbors (here, k = 3). c The random forest algorithm, an ensemble classifier, generates
classifiers that are known as decision trees, which utilizes input traits as branch nodes to resemble a tree structure, to differentiate the training
data into “leaves” referring to the class that terminates a series of nodes and branches. It yields reliable predictions for new input by voting from
an ensemble of decision trees. d Artificial neural networks (ANN), the input (far left) is linked to “artificial neuron” by means of weighted
connections, after a process of the summation, the bias, and the activation function, the input propagates to the output node (far right)
for classification
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the data distribution mismatch between the training and
testing data; 2) Semi-supervised learning which took ad-
vantage of unlabeled testing data. Sairamya et al. found
local neighbor gradient pattern and symmetrically
weighted local neighbor gradient pattern attained higher
classification accuracy using artificial neural network
(ANN) for real-time epileptic EEG [25].

Epileptogenic zone detection
The epileptogenic zone or seizure onset zone (SOZ), defined
as the brain region where an excessive synchronization of
epileptic discharge at seizure onset arises [26]. SOZ detection
performance can be calculated as the percentage of elec-
trodes identified as the SOZ inside the resected area in pa-
tients who achieve seizure freedom, or the percentage of
electrodes identified as the SOZ outside the resected area in
patients who fail the seizure freedom. Reliable methods of
accurate identification of SOZs in preparation for epilepsy
surgery are of critical importance.
Locating the primary epileptogenic zone is difficult, since

electric activity of seizure may outburst abruptly and simul-
taneously propagating over a wide range of cortical areas.
Signals collected by intracranial electrodes with high reso-
lution are regarded as the optimum to investigate the SOZ.
Among them, high frequency oscillation (HFO) carries in-
formation distincting from low-frequency discharges, which
is highlighted as SOZ correlated biomarkers in epilepsy. In
the previous studies, several common features or compo-
nents (fast activity, signal flattening, slow potential shift, etc.)
have been explored using intracranial electrodes (including
stereotactically-implanted intracranial EEG [SEEG], subdural
electrocorticography [ECoG], etc.).

Given seizure onset is a complex phenomenon which
is composed by multiple spatio-temporal elements, con-
centrating on single feature cannot be appraised in isola-
tion. Thus we surmised ML techniques could address
those concerns. Grinenko et al. developed a SVM-based
learning model to discover a “fingerprint”, which effect-
ively differentiated time-frequency patterns of the SOZ
from areas of propagation [27]. Dian et al. employed
IEEG from 6 patients undergoing resection surgery to
train a classification system for identification of the
SOZ. The proposed system leverages ML method (SVM
classifier), extracted features (e.g. high frequency and
low frequency oscillations) for seizure detection and cor-
rectly identified zones for resection from a patient [28].
Elahian et al. applied ML techniques based on phase
locking value between high gamma activity (80–150 Hz)
and the phase of lower frequency rhythms (4–30 Hz), to
effectively identify SOZ from ECoG [29]. Ahmedt-
Aristizabal et al. investigated anatomoelectroclinical cor-
relation to anatomical localization of the epileptogenic
network by jointly deep learning semiological, brain
electrical, and anatomical features [30]. Baud et al. ap-
plied unsupervised learning for interictal epileptiform
discharges (IED) detection and localization [31]. The
proposed algorithm based on non-negative matrix
factorization, leveraged spatiotemporal characteristics
across all channels along with all-time points for analysis
of structural (functional connectivity) and recurrent pat-
terns. The research offered a powerful approach towards
automated IED identification and localization. Liu et al.
put forward a novel tool for the interpretation of patho-
logical HFO to localizing SOZs from functionally
important brain areas [32]. In their research, a pipeline

Fig. 2 General steps for EEG processing. “Feature extraction” is referred to a straightforward data procession to draw hidden information of raw EEG signals from the
available channels (frequency contents or spatial connectivity). Feature is divided into univariate features (e.g. spectral power) and bivariate feature (e.g. cross-correlation)
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of unsupervised ML techniques was employed to learn
the waveform patterns of HFO from intracranial EEG.

Seizure prediction
Seizure prediction is defined as the automatic recogni-
tion of upcoming seizures where the prediction window
can be as long as several minutes [33]. Success in pre-
dicting epileptic seizures would do myriad benefits such
as avoidance of injuries, relieving anxiety, emergency
help and early intervention (e.g. early medication, elec-
tric stimulation of vagus nerve, deep brain stimulation).
Four fundamental phases are critical to study of seizure
prediction. They are: 1) “interictal”, indicating the “nor-
mal” brain state which is far from seizures; 2) “preictal”,
referring to the time interval immediately before the
seizure; 3) “ictal”, as the time period in which seizure oc-
curs; 4) “postictal”, pertaining to the period following a
seizure and before a “normal” brain state. The preictal
period, characterized by dynamic evolution of EEG sig-
nals prior to seizures is the research focus for the seizure
prediction. Due to the dynamic nature of preictal EEG, it
is reported that the theory of chaotic dynamics demon-
strates better predictable ability than linear measure-
ments [33]. The advantages of bivariate and multivariate
measures over univariate (e.g. spectral power) have been
indicated [34].
KNN classifier has been employed for seizure predic-

tion in Wang’s study, providing a prediction perform-
ance with sensitivity of 73% and specificity of 67% [35].
Cho et al. extracted features by calculating phase locking
values between scalp EEG signals and then used SVM to
classify short EEG segments as interictal or preictal [36].
Zhang Parhi used spectral analysis to extract features of
scalp EEG signals, which were then fed into an SVM
classifier to determine preictal state from interictal EEG
[37]. Williamson et al. proposed the application of EEG
spatiotemporal correlation structure (multivariate EEG
features) procedure combined with SVM to classify the
preictal or interictal state (71 of 83 seizures were pre-
dicted) [38]. Mirowski et al. computed bivariate features
of EEG synchronization by using ML methods (SVM, lo-
gistic regression and CNN), which outperformed previ-
ous seizure prediction methods. In their study, CNN
combined with wavelet coherence performed best pat-
tern recognition [39]. Rasekhi et al. used a SVM classi-
fier to learn feature space. Twenty-two linear univariate
features were selected to discriminate the preictal or
non-preictal states (34 out of 46 seizures were predicted)
[40]. Rasekhi’s study strongly indicated scale multiple-
channel EEG recordings for making predictions to some
extent better than that of intracranial EEG recordings,
which was inadequate to reflect the general brain state.
Chiang et al. proposed an on-line retraining method
using linear super SVM Classifier from learning the

preictal and interictal patterns [41]. In Chiang’s study,
super SVM looked more suitable for online learning
mode (74.2% sensitivity on ECoG database and 52.2%
sensitivity on scalp EEG database) than neural network
classifiers, which may gradually lose the capability to
recognize preictal patterns after learning a long series of
interictal patterns. Advance seizure prediction via pre-
ictal relabeling (ASPPR) is a system consisting of a pre-
processing module and a learning module, which facili-
tates recognizing patterns in preictal EEG activity.
ASPPR exploits advanced ML (multiclass SVM) in learn-
ing module and extracts EEG feature in pre-processing
module, displaying more than 94.2% for prediction be-
tween 1 and 25min in advance [42]. Another study for
prediction using multiclass SVM combining multi-
channel high-dimensional feature sets (22 features were
extracted) were presented by Direito et al. [43]. The study
carried out prospective analysis of a large heterogeneous,
multicentric datasets, demonstrating 38.47% sensitivity
and a false positive rate (per hour) of 0.20. Usman et al.
applied empirical mode decomposition (EMD) to pre-
process EEG signal and then compared the performance
of seizure prediction of three classifiers (KNN, SVM and
Naïve Bayes). In their study, SVM performs better in
terms of sensitivity [44]. Jacobs el al. used cross-
frequency coupling index as feature and a multistage state
classifier based on random forest algorithms for seizure
prediction from scalp EEG. The method proposed exhib-
ited 87.9% for sensitivity, 82.4% for specificity, and 93.4%
for area-under-the-ROC (AUC) [45]. ANN along with 72
parameters in frequency domain was proposed for the
prediction of seizures in Sharma’s study with an accuracy
of 92.3%, sensitivity of 100% and specificity of 83.3% [46].
Truong et al. used the short-time Fourier transform to
extract data feature, and CNN for seizure prediction [47].
The method showed its good generalization both intra-
cranial EEG and scalp EEG data. Mirowski et al. used bi-
variate features which measured EEG synchronization in
intracranial EEG combined with 5-layer CNN. It pre-
dicted all testing seizures with no false alarms in 15 out
of 21 patients [39]. In Tsiouris’s study long short-term
memory networks were introduced for seizure prediction
in EEG signals [48]. In that study the use of deep learning
algorithms with CNN provided high sensitivity rates of
seizure prediction and low false prediction rates (FPR) of
0.11–0.02 false alarms per hour. Most recently, Wei et al.
used long-term recurrent CNN to predict epileptic sei-
zures, offering approximately 5–9% increased sensitivity
and specificity compared to deep learning and traditional
ML methods [49]. Wei used the convolutional network
block to automatically extract deep features from the
EEG data.
Despite the rapid application of ML in medical field,

several challenges should be notified. Some researches
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highlighted several potential barriers and problems to
generalization of ML, including training dataset size,
confounding clinical variables, and variability in data col-
lection and interpretation. Additionally, smaller and
homogeneous datasets as well as excessively complex
model may increase the risk of overfitting.

Conclusion and future perspective
ML as an emerging technique renders principled, auto-
matic and objective algorithms for high-dimensioned
and complicated data, which shows its advantage in EEG
signal analysis compared to traditional methods. Despite
the merits of ML (e.g. small biasness and high sensitivity
to patterns recognition), reliable classifiers, specific fea-
ture extraction, well-selected data and computation cost
should all be taken into consideration. For example,
channel selection on certain conditions can reduce com-
putation loading of both feature extraction and pattern
recognition, which is feasible for the on-line computa-
tion especially for some wearable or implantable devices
in real application. Another probable alternative is to
take advantage of cloud computing bridged by 5G tech-
nology to realize real-time exchange of EEG recording.
With respect to ML methods, deep learning as a hot
technique in image processing, yet it is only starting to
emerge in EEG processing, which show its superiority in
EEG pattern recognition.
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mode decomposition; AUC: Area-under-the-ROC; FPR: False prediction rates;
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