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Abstract 

Balloon cells (BCs) are specific pathological marker of cortical malformations during brain development, often associ-
ated with epilepsy and development delay. Although a large number of studies have investigated the role of BCs 
in these diseases, the specific function of BCs as either epileptogenic or antiepileptic remains controversial. Therefore, 
we reviewed literatures on BCs, delved into the molecular mechanisms and signaling pathways, and updated their 
profile in several aspects. Firstly, BCs are heterogeneous and some of them show progenitor/stem cell character-
istics. Secondly, BCs are relatively silent in electrophysiology but not completely isolated from their surroundings. 
Notably, abnormal mTOR signaling and aberrant immunogenic process have been observed within BCs-containing 
malformations of cortical development (MCDs). The question whether BCs function as the evildoer or the defender 
in BCs-containing MCDs is further discussed. Importantly, this review provides perspectives on future investigations 
of the potential role of BCs in epilepsy.
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Introduction
 Malformations of cerebral cortical development (MCDs) 
include a wide range of developmental disorders that are 
common causes of epilepsy or/and developmental delay 
[1, 2]. MCDs can be classified into different subtypes 
based on their clinicopathological features. Balloon cell 

is a histopathological hallmark frequently observed in the 
lesion areas of several MCD subtypes, such as focal corti-
cal dysplasia type IIb (FCD IIb), tuberous sclerosis com-
plex (TSC), and hemimegaloencephaly (HME) [3–7].

Prior researches have extensively investigated BCs and 
provided valuable insights into their morphology, dis-
tribution, genetic mutations, transcriptomic patterns, 
protein expressions, electrophysiological properties, and 
signaling pathways [5, 8–10]. These studies have contrib-
uted to our initial understanding of BCs and shed light 
on the potential pathomechanisms underlying MCDs 
and drug-resistant epilepsies. However, some of the find-
ings have resulted in conflicting conclusions, and the 
exact epileptogenic mechanisms are still not completely 
comprehended, calling for further investigations to faith-
fully uncover the precise role of BCs [11].

In this review, we aim to provide a comprehensive sum-
mary of the current literature on BCs. Beginning with an 
overview of several BCs-containing MCDs, we further 
summarize the features of BCs, including their origin, 
cell cycle regulation, electrophysiology, etc. Moreover, 
we delve into the molecular mechanisms and signaling 
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pathways related to BCs, which help to understand the 
evildoer or defender role of BCs in these BCs-containing 
MCDs. A better understanding of BCs would aid in com-
prehending the pathogenesis of epilepsy and lead to more 
effective therapeutic strategies.

Balloon cells‑containing malformations of cortical 
development
MCDs are characterized by abnormal cortical struc-
ture or presence of heterotopic grey matter, sometimes 
associated with abnormal brain volume [1]. MCDs may 
cause severe morbidity at any age, but common symp-
tom onset ranges from early childhood to early adult age 
[2]. Approximately 40–50% of drug-resistant epilepsies 
treated with surgery in children are caused by MCDs [1].

MCDs are typically classified based on neuroimag-
ing features, clinical phenotypes and genetic findings 
[2]. In surgically resected tissues, BCs are characterized 
by their enlarged somatic sizes, pale glassy eosinophilic 
cytoplasm in H&E staining, multiple eccentric nuclei, 
and ample neurites but minimal axonal processes (Fig. 1). 
Notably, they lack detectable Nissl bodies, distinguish-
ing them from other neurons [9, 12–14]. Therefore, even 
though the classification schemes of MCDs change con-
stantly, BCs-containing MCDs remain widely accepted 
[1, 2, 15–17].

One typical BCs-containing MCDs subtype is FCD 
type IIb [2, 10, 18, 19]. FCD was first identified by Taylor 
and colleagues in 1971, and was manifested as localized 
malformation and abnormal development of the cortex 
[20, 21]. FCDs were categorized into three groups: FCD 
I, characterized by alterations in columnar/radial (Ia) or 
laminar/tangential structure (Ib); FCD II, often easily 

visualized by MRI and characterized by marked disrup-
tion of cortical lamination with presence of morpho-
logically abnormal cell types, specifically dysmorphic 
neurons (IIa) and ones with balloon cells (IIb); and FCD 
III, associated with additional brain lesions in the same 
lobe, such as hippocampal sclerosis (IIIa), tumor (IIIb), 
vascular malformation (IIIc), or lesions acquired during 
early life (IIId) [1, 6, 7, 18, 22, 23].

Seizures are better controlled in FCD II than in FCD 
I, despite the presence of  more severe histopathologic 
lesions in FCD II, such as misplaced cytomegalic dysmor-
phic neurons, reduced white matter myelin content, and 
blurring of the white/grey matter boundary [22, 24]. BCs 
are frequently found in clusters or dispersed throughout 
FCD IIb lesions, with a preference for localizing in deep 
cortical layers and superficial white matter [22].

Another common subtype of BCs-containing MCDs 
is TSC, which is an autosomal dominant, multi-system 
disorder resulting from mutations in the TSC1 or TSC2 
genes [4, 20, 25, 26]. Over 80% of TSC patients develop 
cortical tubers, which are focal malformations that form 
during brain development [27]. Like FCD IIb, cortical 
tubers in TSC also  exhibit laminar disorganization and 
the presence of BCs [28, 29].

Another type of BCs-containing MCDs is HME, which 
is a congenital brain malformation that mainly affects one 
cerebral hemisphere and sometimes involving the ipsilat-
eral cerebellar hemisphere and brainstem [30, 31]. The 
histopathological features of HME encompass abnor-
malities in cellular growth and cytomorphology, such as 
the presence of BCs in both gray matter and superficial 
white matter, as well as disorganized tissue architecture 
[31, 32].

Fig. 1  An overview of the features of BCs
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BCs have been identified as a specific feature of FCD 
IIb, TSC and HME and are linked to severe brain disor-
ders and drug-resistant epilepsies. Despite progress in 
the classification and characterization of BCs, their cel-
lular origin and functional implications in MCDs remain 
unclear.

An origin profile of balloon cells: heterogeneity 
and cell cycle arrest
The central nervous system (CNS) is one of the first 
organ systems to initiate development in the human 
body, exhibiting rapid growth from 4 postconceptional 
weeks (PCWs) to the third postnatal year [33]. This 
development process intricately involves the interplay of 
morphogens and transcription factor gradients, acting 
on various cortical progenitor cells [34]. The evolution 
of the human brain has been systematically delineated by 

several groups [33]. Specifically, neuroepithelial cells in 
the ventricular zone (VZ) act as the stem or progenitor 
cells for all neurons and macroglia in the CNS. These cells 
undergo sysmmetrical divisions to expand their popula-
tions during the early embryonic stages [35]. Starting at 
7 PCWs, neural progenitor cells transition into radial glia 
(RG), extending long processes from the ventricular to 
the pial surface. Subsequently, they undergo asymmetric 
division, yielding one RG and one post-mitotic neuron or 
an intermediate progenitor cell [36–38]. Newly-gener-
ated neurons migrate in an “inside out” pattern, moving 
past the early-born neurons to form progressively super-
ficial layers. In humans, this migration is projected to last 
for 143 days (48–191 postconceptional  days), compared 
to 11 days in mice and 67 days in rhesus macaques (Fig. 2) 
[33–35, 37–39]. Dysregulation of these developmental 
processes can impact the structure and functionality of 

Fig. 2  The schematic depicts the cell cycle, differentiation and regulation of cortical development. Adapted from Dalton et al., Thom et al., and Luo 
et al. [40–42]. In the early stage of development, neuroepithelial cells or neural progenitors in the ventricular zone (VZ) divide symmetrically. As 
development progresses, they transform into radial glia and extend their processes to intermediate zone (IZ) and cortical plate (CP). The neurons 
generated from radial glia through asymmetric division initiate migration along the radial glia and settle in the deepest layer. Subsequently, 
new-born neurons migrate past the early-born neurons to settle in progressively more superficial layers.  In the top-left corner, a cell cycle 
is illustrated by a gradient color ring, demonstrating the four primary cell cycle stages. Stem cells are refractory to differentiation signals during S, 
G2 and M phases. Upon entry into G1 phase, cells become permissive for cell fate specification and responsive to developmental signals. The G1 
phase can be further divided into early G1 and late G1, expressing specific regulatory proteins listed in the dashed boxes respectively. BCs expressed 
abundant early G1 proteins and few late G1 proteins, indicating that BCs are trapped in early G1 phase. Dysregulation of cell cycle proteins in BCs 
may be a primary abnormality that affects cell maturity, cell cycle progression and the determination of cell fate. This dysregulation is responsible 
for the disorganized cortical layers in FCDs and some other pathological processes
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the CNS, potentially leading to neurological or psychiat-
ric disorders.

To date, there is scant evidence indicating the presence 
of BCs in either the typical human cerebral cortex or any 
animal model, suggesting that they might represent a 
unique cell type specifically linked to the development of 
MCDs, or they may be a modified version of an existing 
cell type with abnormal morphology. To fully understand 
the mechanism underlying the origin of BCs, it is neces-
sary to identify their developmental characteristics.

BCs express a heterogeneous and frequently mixed 
array of lineage markers [3, 5, 7, 10, 11, 14, 30]. These 
markers include both neuronal and glial markers, such 
as NeuN, neurofilament, MAP2, GFAP, and S-100β pro-
tein, indicating significant diversity cell types within 
BCs [23, 43, 44]. Vimentin, a marker typically expressed 
in immature or radial glia, is frequently observed in 
BCs as well  [14, 26, 44–46]. In addition, markers such 
as  β-tubulin 3 and TUJ1, which are commonly associ-
ated with immature neurons, have been detected in BCs 
[47–49].

BCs share markers with stem cells or progenitor 
cells, such as nestin, CD34, CD133, SOX2, BLBP, Otxl, 
GFAP-δ, Pax6, Klf-4, β1-integrin, and CRMP4, suggest-
ing that BCs may derive from a lineage of neuroglial-like 
progenitor cells (Fig. 1) [10, 27, 44, 47, 50, 51]. Addition-
ally, two in  vitro studies demonstrated that BCs were 
cultured after being isolated from surgical resections of 
FCDs and tuber tissues, providing further validation of 
their stem cell characteristics [11, 27]. Despite their cel-
lular immaturity, BCs rarely express cell division mark-
ers such as proliferating cell nuclear antigen (PCNA) or 
Ki-67, suggesting that these cells are in a near-stem-cell 
stage but are not actively dividing [30, 50, 52].

The regulation of cell proliferation, differentiation and 
fate commitment is tightly linked to cell cycle control 
signaling [40, 53]. Cells in distinct cell cycle states exhibit 
varied molecular features and functional outputs [54]. It 
is now widely accepted that the G1 phase provides a criti-
cal window for the  genetic and epigenetic regulation of 
cell fate decisions [40, 54]. During each round of cell divi-
sion, intrinsic and extrinsic factors trigger cells to decide 
whether to continue dividing or entering a quiescent 
state (G0) through a mechanism called “restriction point” 
(R-point) control [55].

Previous studies by Thom et  al. have evaluated the 
proliferative potential of BCs in FCD [41, 50]. Their 
findings showed that the majority of BCs exhib-
ited  strong staining with the Mcm2 antibody, which 
is expressed throughout the G1 phase of the cell 
cycle [50]. Furthermore, only a small fraction of BCs 
expressed geminin, which is specifically expressed dur-
ing S/G2/M phases, suggesting that only a  few BCs 

entered the S phase or complete the cell cycle [41]. 
Based on these findings, it has been hypothesized 
that BCs may represent remnants of early cortical 
cells that have  undergone cell cycle arrest and failed 
to undergo  differentiation or to be eliminated during 
development (Fig.  2) [41]. Specifically, BCs may arrest 
in the G1/S phase transition, a stage where the cell has 
grown  physically but before DNA replication is initi-
ated [10, 41].

The G1 phase can be further subdivided into early and 
late phases, characterized by specific markers and/or reg-
ulators such as cyclin D1, cdk4, p53, and nonphosphoryl-
ated retinoblastoma protein (Rb) for the early phase, and 
Cyclin E, cdk2, phosphorylated Rb, and checkpoint 2 for 
the late phase [53]. BCs demonstrate heightened expres-
sion of regulators associated with the early G1 phase but 
exhibit diminished expression of regulators  associated 
with the late G1 phase, suggesting a propensity for BCs to 
be trapped in the early G1 phase with limited progression 
into the late G1 phase (Fig. 2) [41, 52].

Beyond cell cycle abnormalities, the TSC genes in the 
mTOR signaling pathway have been extensively stud-
ied for their role in the pathogenesis of TSC and FCD 
IIb cases, particularly in BCs and dysmorphic neurons 
(DNs) (Fig. 3) [50, 56]. Notably, Baldassari et al. employed 
laser-capture microdissection (LCM) on frozen brain 
sections to selectively isolate BCs, DNs and morphologi-
cally normal-appearing neurons. This approach enabled a 
more direct genetic comparison, revealing that both BCs 
and DNs carry pathogenic variants related to the mTOR 
pathway, similar to those observed in HME cases [3]. 
Furthermore, they observed a significant enrichment of 
somatic variant in glial cells, possibly indicating an early 
mutational event in common neuroglial progenitors, 
which aligns with our previous discussion.

The tuberin/hamartin complex, which is encoded by 
TSC1/TSC2, plays a key role in the regulation of cell size, 
shape, proliferation, differentiation, and the  cell cycle. 
Mutations in these genes result in the activation of the 
mTOR signaling pathway, which leads to increased pro-
tein synthesis, cell growth, and proliferation. Ultimately, 
these molecular alterations  contribute to the formation 
of cortical dysplasia (Fig. 3) [20, 29].

Doublecortin, a fetal neuronal protein that regulates 
neuronal migration, is highly expressed in BCs [57, 58]. 
Failure of maturation and migration during develop-
ment can result in the persistence of immature neurons 
and dysfunction of synaptic circuits, contributing to the 
pathogenesis of cortical dysplasia [9]. Coexpression of 
the anti-apoptotic protein BCL-2 with CD133-positive 
BCs in FCDs suggests that resistance to programmed 
cell death may be involved in the pathogenesis of cortical 
dysplasia [48].
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These findings indicate that BCs are under cell cycle 
arrest and migration failure. It is proposed that BCs orig-
inate from naive progenitor cells whose developmental 
trajectory is prematurely terminated [5, 58].

Physiology function of balloon cells: “silent” 
but not isolated
Dysplastic neurons (DNs) typically exhibit morpho-
logical, structural, or functional abnormalities during 
cortical development in the brain. They are considered 
important hallmark cells in the pathological diagnosis 
of epilepsy patients and are often observed alongside 
BCs [10]. Studies have reported that DNs within the 
lesion exhibit increased calcium influx and currents in 
response to stimulation, compared to normal neurons, 
suggesting that DNs play a significant role in generating 
epileptiform discharges within the MCD network [8, 
13]. However, the involvement of BCs in epileptogen-
esis or ictal discharges has not been extensively exam-
ined in vivo, mainly due to the lack of an animal model 

that faithfully recapitulates BCs [8, 13, 28]. Currently,   
our  understanding of BCs electrophysiological activi-
ties mainly comes from ex vivo brain slice preparation 
derived  from resected tissue. In FCD IIb- and TSC- 
brain slices, Mathern’s team found that BCs lacked of 
voltage- and ligand-gated sodium and calcium cur-
rents, did not generate action potentials when depolar-
ized, and displayed no spontaneous synaptic currents 
or responses to exogenous application of glutamate 
[8, 9, 28]. Thus, it seems that BCs neither contribute 
to abnormal electrical discharges nor receive synaptic 
inputs [9].

However, the involvement of BCs in epileptogenesis 
is not completely rule out [13]. Although BCs may not 
generate abnormal electrical discharges spontaneously, 
they are not completely inactive or isolated from other 
cells and tissues within the lesions. This hypothesis is 
supported by numerous observations, including electro-
physiological recordings and immunostaining of connec-
tion-related proteins [10, 59–61].

Fig. 3  The schematic depicts the mTOR pathway. Adapted from Iffland et al. and Orlova et al. [10, 27]. The cytoplasmic mTOR signaling pathway is 
influenced by multiple nodes, including PI3K, AKT, AMPK, CDK1, GSK3β, etc. The TSC1/TSC2 protein complex (tuberin/hamartin complex) 
integrates cues from growth factors, cell cycle regulators, and nutrients to regulate the activity of mTOR signaling, which could be inhibited 
by rapamycin. Hyperactive mTOR signaling results in enhanced S6K1 and S6 phosphorylation, leading to increased cell size. Inhibition of 4E-BP1 
by mTOR results in enhanced translation of c-Myc, which translocates into the nucleus to regulates expression of Oct-4, SOX2, and nestin, perhaps 
conferring the immature cellular phenotype of BCs. Constitutive activation of mTOR also enhances ribosome biogenesis, mRNA transition, protein 
synthesis, and inhibits autophagy. Loss-of-function mutations in either TSC1 or TSC2 lead to hyperactivation of the mTOR signaling pathway 
and elevate expressions of the downstream molecules, which might be a pathogenic mechanism in some MCD subtypes.  Abbreviation: PI3K : 
phosphatidylinositol 3-kinase; AMPK : AMP kinase; GSK3β : glycogen synthase kinase 3β; CDK1 : cyclin-dependent kinase 1; Rheb : Ras homologue 
enriched in brain; S6K1 : p70S6 kinase 1; S6 : ribosomal protein S6; 4E-BP1 : 4-elongation factor binding protein-1: eIF4E : eukaryotic initiation factor 
4E; Oct-4 : octamer-4; SOX2 : sex-determining region Y-box 2
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In Mathern’s electrophysiological investigations, BCs 
were found to exhibit an almost linear relationship in the 
hyperpolarizing direction but demonstrate strong rectifi-
cation in the depolarizing direction, which was attributed 
to the activation of delayed rectifier K+ channels [28]. 
This finding  is plausible because BCs express  multiple 
transporters, receptors, which contributes to the unclear 
role of BCs in epileptogenesis in MCDs [9, 10, 47, 56, 59, 
60, 62].

In FCD tissues, BCs express VGLUT2, a vesicular glu-
tamate transporter that enables them to release gluta-
mate and contribute to epileptogenesis [9, 47]. However, 
BCs also express EAAT2/GLT1, a glutamate transporter 
typically found in glia cells, indicating a potential role in 
glutamate buffering [9, 62]. Some studies suggest that 
BCs-containing areas exhibit increased clearance of glu-
tamate, which could limit the spread of epileptic activity 
[9, 62]. Additionally, BCs are known to express NKCC1, 
a chloride transporter primarily found in immature neu-
rons that regulates GABAA receptor function by influ-
encing the  accumulation of [Cl−]i and maintaining the 
Cl− gradient [56]. In cortical tubers, BCs have been found 
to express elevated levels of LAT1, a sodium-independ-
ent transporter that facilitates the active transport of 
large neutral amino acids [63].

BCs express not only various transporters but also 
glutamate receptors subunit proteins, including AMPA 
receptor (GluR1-4), kainate receptor (GluR5-7), NMDA 
receptor (NR1, NR2a/b), and subtypes of  metabotropic 
glutamate receptor, such as mGluR1α, mGluR2/3, 
mGluR5 [8, 14, 64]. BCs also  exhibit immunoreactiv-
ity for proteins  involved in the regulation and induction 
of angiogenesis during both development and in patho-
logical conditions [65]. Additionally, there is an increased 
expression of ion channels on BCs, such as Panx1 and 
Panx2, transient receptor potential canonical channels 
(TRPCs), TRPV1, acid-sensing ion channels (ASICs) 
(Table 1) [66–73].

BCs show decreased parvalbumin (PV)-immunoreac-
tivity. However, they are surrounded by  abundant PV-
positive fibers in the deep portions of the malformed gray 
matter and superficial white matter, indicating a dense 
cluster of GABAergic input to BCs [59, 60]. GABAergic 
synaptic inputs are excitatory in immature pyramidal 
neurons [9, 86]. In MCDs, dysplastic cells retain features 
of immature cortex with a predominance of GABA syn-
aptic activity [87, 88]. It is plausible that the GABAergic 
input to BCs may contribute to epileptogenesis.

 In CNS, astrocytes establish interconnected net-
works through gap junctions (GJs) composed of connex-
ins subtypes Cx30 and Cx43 [61, 89]. Previous studies 
have  suggested that the prototypic form of electrically-
induced seizure-like oscillations can be driven solely by 

fast-spiking networks through their excitatory GABAer-
gic transmissions via gap junction-mediated communica-
tion [90, 91]. Within epileptic tissues of FCD IIb, clusters 
of Cx43-immunopostive puncta (but not Cx30) have 
been detected on subsets of BCs and astrocytes. While 
further validation  is needed to confirm this observation 
and its functionality, it provides a plausible mechanism 
for spatial buffering of extracellular ions and neurotrans-
mitters [61].

In sum, BCs may play a dual role in the epileptogenic 
network, either contributing to epileptogenesis or exter-
ing antiepileptic effect [10]. Further research is necessary 
to clarify the exact role of BCs in MCDs.

Pathology pathway of balloon cells: an abnormal 
mTOR signaling and immunoreaction
For a long time, the pathogenesis of MCDs lacked etio-
logical clues. In 2004, an insightful study revealed over-
activation of mammalian target of rapamycin (mTOR) 
signaling  pathway in human specimens of  FCD IIb and 
cortical tubers obtained during epilepsy surgery [10, 
92]. These studies  demonstrated the presence of mTOR 
pathway overactivation, as evidenced by phosphorylated 
ribosomal S6 (PS6) and 4E-BP1 in DNs and BCs (Fig. 3) 
[93, 94]. In the following year, mTOR hyperactivation 
has been discovered in other MCD subtypes, including 
HME and ganglioglioma [93, 94]. Subsequent studies in 
cell culture and animal models replicate these observa-
tions in human specimens, further highlighting a strong 
association between mutations in mTOR regulatory 
genes and mTOR overactivation, which could be effec-
tively blocked or reversed by mTOR inhibitors, such as 
rapamycin (Fig. 3) [79, 95, 96]. These findings strengthen 
the notion that the dysregulation of the mTOR signaling 
pathway plays an important role in epilepsy-associated 
pathologies.

The mTOR pathway is a key regulator in the develop-
ment of the cerebral cortex [97, 98]. Nevertheless, it 
remains difficult to explain the entire  pathogenesis of 
MCDs solely base on the mTOR pathway. For instance, 
mTOR-signaling hyperactivation is only present in lim-
ited cell types, like BCs and DNs in FCD and TSC speci-
mens, leading to the hypothesis that FCDs may  arise 
from somatic gene mutations occurring in a single or 
small subset of neuroglial progenitor cells in the telence-
phalic VZ during embryogenesis [97]. For instance, adhe-
sion molecule on glia (AMOG), recognized as a regulator 
of mTOR, has been detected in reactive astrocytes, dis-
playing robust perisomatic staining in BCs [79]. Over the 
past several years, both somatic and germline mutations 
in genes encoding mTOR-cascade regulatory proteins, 
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Table 1  Immunoreactivity findings of BCs in MCD specimens

Antigen/Expression Description/Labeling Pathology References

Neuropithelial
  Neurofilament + Neuronal and axonal marker FCD IIb, HEM [14, 30, 64, 74]

  NeuN + Neuronal nuclear protein, neuronal nuclear marker FCD IIb, HEM [64]

  MAP2 + Microtubule associated protein 2, neuronal and dendritic marker FCD IIb, HEM [27, 48]

  S-100β + Glial marker FCD IIb, TSC, HEM [30, 75]

  GFAP + Glial fibrillary acidic protein, astrocyte marker FCD IIb, TSC, HEM [14, 74]

  Chromogranin A + Neuronal marker HEM [30]

Progenitor/stem cell marker
  Vimentin + Immature neurons and radial glia marker FCD IIb, HEM [14, 48]

  Phospho-vimentin + Intermediate filament protein identified in radial glial cells FCD IIb [47]

  Nestin + Neural stem cell marker FCD IIb [11, 14, 48]

  CD34 + Hematopoietic progenitor cells and vascular endothelium FCD IIb [14]

  CD133 + Pluripotential stem cells marker FCD IIb, TSC [11, 48]

  SOX2 + SRY-box transcription factor 2, expressed in neuroglial progenitor cells FCD IIb, TSC [11, 27]

  SOX3 + SRY-box transcription factor 3, expressed in neuroglial progenitor cells FCD IIb [27]

    BLBP + Brain lipid binding protein, expressed in neuroglial progenitor cells and radial glial 
cells

FCD IIb [47]

  Otx1 + Orthodenticle-1, expresed in neuroglial progenitor cells FCD IIb [47]

  Pax6 + Paired box gene 6, expressed in radial glial cells FCD IIb [47]

  GFAP-δ + A distinct splice variant isoform of GFAP, expressed in neuronal stem cells FCD IIb, HEM [74, 75]

  Mcm2 + Minichromosome maintenance complex component 2, expressed in neural stem 
cells

FCD IIb [41]

  CRMP4 + Collapsin response mediator protein 4, a marker for newly generated neurons FCD IIb, TSC [47]

  β1-integrin + A stem cell marker FCD IIb, TSC [11]

  Klf-4 + Krüppel-like factor 4, a stem cell marker FCD IIb [27]

  Ki-67 - Protein phosphatase 1, expressed in neuronal precursors FCD IIb, TSC [41, 47]

  β-tubulin3 + Expressed in immature neurons FCD IIb, TSC [27, 48]

  TUJ1 + Class III β-tubulin, expressed in immature neurons FCD IIb [48]

Cell cycle proteins
  cdk4 + Cyclin-dependent kinase 4 FCD IIb [41]

  cdk2 - Cyclin-dependent kinase 2 FCD IIb [41]

  p53 + Cellular tumor antigen p53, eell cycle protien FCD IIb [41]

  Rb + Nonphosphorylated retinoblastoma protein, cell cycle protien FCD IIb [41]

  PCNA - Proliferating cell nuclear antigen, a cell cycle nuclear protein FCD IIb, TSC [26, 47]

Transporters
  VGLUT2 + Vesicular glutamate transporter 2 FCD IIb [47]

  VGAT​ - Vesicular GABA transporter FCD IIb [47]

  EAAT2 + Excitatory amino acid transporter 2, glutamate transporter of glia cells FCD IIb [47, 76]

  GLT1 + Glucose transporter type 1, a glucose transporter of glia cells FCD IIb [47, 76]

  NKCC1 + Na-K-2Cl cotransporter FCD IIb, TSC [56]

  KCC2 - K-Cl cotransporter FCD IIb, TSC [56]

  LAT + L-type amino acid transporter TSC [63]

Receptor subunits
  GluR1/2/3/4 + AMPAR subunit glutamate receptor 1/2/3/4 FCD IIb [14]

  GluR5/6/7 + Kainate receptor subunit glutamate receptor 5/6/7 FCD IIb [14]

  mGluR1α + Group Iα metabotropic glutamate receptors FCD IIb [64]

  mGluR2/3 + Group II/III metabotropic glutamate receptors FCD IIb [64]

  mGluR5 + Group V metabotropic glutamate receptors FCD IIb [64]

  NR1 + NMDAR protein1 FCD IIb [14]

  NR2a/b + NMDAR protein 2a/b FCD IIb [14]
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including TSC1/TSC2, have been associated with FCD 
IIa and IIb [10].

Studies have shown that expressing mutant MTOR 
constructs in fetal mice brain results in aberrant cell size, 
neuronal migration, and cortical lamination,  ultimately 
leading to spontaneous seizures [99]. Similarly, somatic 
MTOR mutations derived from FCD IIb patients elevate 
the  phosphorylation level of 4E-BP1 in HEK293T cells 
[95]. In addition, loss-of-function mutations in DEPDC5 
have been identified in FCD IIa and IIb specimens in the 
forms of germline frameshift, splice-site, or nonsense 
variants [96, 100]. More recently, a heterozygous ger-
mline frameshift mutation in NPRL3 was identified in 
FCD IIa patients through whole-exome sequencing and 
linkage analysis [101].

Moreover, experimental studies have shown that 
manipulating these gene results in altered cell morphol-
ogy and hyperactive mTOR signaling. A highly consist-
ent and reproducible feature of the tissues with abnormal 
mTOR pathway is the disruption of cytoarchitecture, 
which accounts for the enlargement of BCs and cytomeg-
alic neurons in cortical dysplasia. This results in a focal 
area of the brain being abnormal while the rest of the 
cortex remains normal, and alters the laminar position of 

other normally appearing neurons [9, 92, 93, 102, 103]. In 
addition, mutations in mTOR pathway-related genes also 
lead to changes in releasable factors, neurotransmitters, 
and modulators, which subsequently alter cell shape and 
motility in adjacent seemingly unaffected cells [104–106]. 
It appears that at the molecular and cellular levels, FCD 
IIa and IIb are mTORopathies, and targeting the mTOR 
signaling pathway could be a potential  treatment option 
for drug-resistant epilepsies.

Besides mTOR, the Wnt/Notch pathway, which is 
involved in neuronal differentiation, migration and 
organization has also been found to be altered in MCDs 
[107, 108]. BCs have been reported to exhibit decreased 
cytoplasmic Notch-1 and reduced nuclear β-catenin 
expression [108]. Since the Wnt/Notch pathway influ-
ences cell size, cell cycle and cell fate, the abnormalities in 
Wnt/Notch signaling in BCs may be responsible for the 
neuropathology of MCDs [109, 110].

In addition to the principal cytoarchitectural abnor-
malities, immune system activation is involved in the 
pathophysiology of epilepsy [22]. Pro-epileptogenic 
immune system activation and inflammatory responses 
have been detected in both FCD IIa and IIb [22]. How-
ever, some investigators have found stronger expression 

Table 1  (continued)

Antigen/Expression Description/Labeling Pathology References

  RAGE + Receptor for advanced glycation end products FCD IIb [77]

  TRPV1 + Transient receptor potential vanilloid receptor FCD IIb, TSC [66]

  CB1/2 + Cannabinoid receptors FCD IIb, TSC [78]

Channels
  Panx1/2 + Pannexin1/2, large-pore ion channel, involved in epilepsy and brain development FCD IIb [70]

  TRPC1/4/6 + Transient receptor potential canonical channel FCD IIb [68, 69, 71]

  ASICs + Acid-sensing ion channels, H+-gated cation channel FCD IIb [72]

  AMOG + Adhesion molecule on glia, a Na+/K+-ATPase FCD IIb [79]

  Cx43 + Connexin43, a gap junction subunit FCD IIb [61]

Inflammatory markers
  IL-6/IL-6R + Cytokine interleukin 6 and its receptors FCD IIb, TSC [80]

  IL-17/IL-17R + Cytokine interleukin 17 and its receptors FCD IIb, TSC [81]

  TLR2/4 + Toll-like receptors FCD IIb [77]

  HMGB1 + High-mobility group box 1 FCD IIb, TSC [77]

  VEGFR-1/2/3 + Vascular endothelial growth factor receptors FCD IIb [65, 82]

  MMP9 + Matrix metalloproteinases 9 FCD IIb [83]

  LILRB2 + Leukocyte immunoglobulin-like receptor B2 FCD IIb, TSC [84]

  NOS + Nitric oxide synthase FCD IIb, TSC [85]

  COX-2 + Cyclo-oxygenase 2 FCD IIb, TSC [85]

Other proteins
  Doublecortin + A fetal neuronal protein that regulates neuronal migration FCD IIb, TSC [57, 74]

  DCL + Doublecortin-like, regulates neuronal division and radial migration FCD IIb, TSC [58]

  BCL-2 + B-cell lymphoma-2, antiapoptotic gene products FCD IIb [48]

  α-B-Crystallin + Marker of epileptic foci FCD IIb, TSC [73]
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of components of innate immunity, adaptive immunity 
and cytokine production in FCD IIb compared to FCD 
IIa. The hypothesis has been advanced that BCs are 
crucial drivers of inflammation in FCD IIb, with the 
underlying mechanism possibly stemming from a high 
mutational burden and consequent intrinsic activation 
of the mTOR [3, 22]. For instance, the expression of 
HLA-II and IL-1β has been shown to be dependent on 
the mTOR pathway [111, 112]. Additionally, the gen-
eralized anabolic activity resulting from mTOR hyper-
activity may promote the nonspecific production of 
immune factors [113].

Meanwhile, Yang et  al. investigated the link between 
inflammatory responses and BCs in FCD and TSC tis-
sues, providing evidence that supports the role of BCs 
in initiating inflammatory response [81, 82, 85, 114]. In 
their studies, he and colleagues first observed the overex-
pression of interleukins and their receptors (IL-6/IL-6R, 
IL-17/IL-17) in BCs in FCD IIb, which were co-expressed 
with GFAP and sometimes with NF200 [81]. They also 
found increased expression of toll-like receptors (TLRs) 
and high-mobility group box  1 (HMGB1) in FCD IIb 
and TSC, potentially leading to the  upregulation of 
downstream inflammatory factors in epilepsy, including 
FPR2, nuclear factor-κB (NF-κB), interleukin-1β (IL-1β), 
and tumor necrosis factor-α (TNF-α) [115]. Specifically, 
TLR-2 was predominantly detected in microglia/mac-
rophage cells and BCs, indicating that they represented 
a significant source of pro-inflammatory molecules [77]. 
Secondly, increased levels of VEGFs were found in BCs, 
DNs and astrocytes in FCD IIb, which could contribute 
to astroglial activation and associated inflammatory reac-
tions [65, 82]. Furthermore, high levels of MMP9 were 
detected in BCs and reactive astrocytes, which is known 
to be a regulator of various physiological and pathologi-
cal inflammatory processes [83]. Additionally, human 
leukocyte immunoglobulin-like receptor B2 (LILRB2), 
involved in neurite growth, synaptic plasticity, and 
inflammatory reactions, was strongly expressed in DNs 
and BCs, suggesting its potential role in pathogenesis of 
MCDs [84].

Researchers have identified several inflammatory mark-
ers in BCs and some small glial cells, including inducible 
NOS, xCT, and COX-2 [85]. Furthermore, there is higher 
expression of CCL2 in microglia close to BCs, suggesting 
intercellular reactions and an additional pro-inflamma-
tory contributions from glial cells [22, 75]. The  activa-
tion of these inflammatory signaling pathways in focal 
malformations of cortical development may contribute to 
the  high epileptogenicity of developmental lesions [22]. 
Therefore, targeting the aberrant immunogenic process 
of BCs during brain development could be served as a 
potential therapeutic approach for MCDs [22, 81, 85].

Conclusions
Balloon cells (BCs), with their unique morphological 
and physiological features, have  emerged as a compel-
ling focus in epileptogenesis research. Morphologically, 
BCs resemble balloons and exhibit characteristics of both 
neurons and glial cells, indicating a developmental aber-
ration where precursor neurons likely misinterpret sig-
nals for growth, division, and differentiation, leading to a 
suspended cell cycle and an undifferentiated state. Their 
predominant presence at the gray-white matter interface 
or within white matter, with limited migration to superfi-
cial layers, suggests a possible structural maladaptation. 
Physiologically, the lack of action potential generation 
and minimal response to electrical stimuli by BCs hint at 
their potential role in mitigating aberrant excitatory sig-
nals during epileptic episodes. The profusion of channels, 
receptors, and transporters on BCs, along with inhibitory 
fiber envelopment and demonstrated glutamate reup-
take potential, indicates they may play  a constructive 
role in  regulating excitatory neurotransmission. Inflam-
matorily, BCs can  provoke inflammation, potentially 
harming patients, yet also delineating the lesion area as 
a specific  target for pharmacological intervention, pos-
sibly yielding therapeutic benefits. On a molecular level, 
BCs frequently correlate with aberrant activation of 
the mTOR pathway, leading to a spectrum of molecular 
and cellular distrubances, primarily observed in patho-
logical entities, including BCs and DNs. In summary, BCs 
challenge the simplistic binary of being solely harmful or 
beneficial; they manifest a complex dualism that warrants 
attention.

Despite progress in imaging, cellular electrophysiol-
ogy and molecular biology, there are still essential ques-
tions that  remian  unanswered, necessitating further 
exploration. Due to technological limitations and lim-
ited availability of  samples, the scientific  community 
should exploit technological progress and innovation 
to enhance our comprehension of the inherent charac-
teristics of BCs. This effort has the potential to establish 
more effective, less invasive, or non-invasive treatment 
approaches (Fig. 4).

Currently, the mechanisms underlying the divergent 
histopathologies resulting from mutations in the same 
gene or protein domain, such as the formation of BC in 
certain individuals with MTOR or DEPDC5 mutations 
but not others,  remain unclear. Despite numerous stud-
ies manipulating mTOR-related genes to emulate gain or 
loss of function, the  induction of BCs in vitro or in ani-
mal models has not yet achieved [10]. Future research 
efforts  should focus on identifying the developmental 
timing and the specific  progenitor cell types implicated 
in BC genesis. In this context, a  promising avenue is 
the  instant freezing surgically resected brain tissue  rich 
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in BCs, followed by subsequent single cell/spatial tran-
scriptional and metabolomic analysis. This approach was 
effectively demonstrated in Baldassari et al.’s study, where 
laser capture microdissection (LCM) was utilized [3].

The observed heterogeneity of BCs across various 
studies reaffirms their complexity, adding to the investi-
gative challenge. A promising approach is to amalgam-
ate multidimensional data, including electrophysiology, 
morphology, and single-cell transcriptomics. Further-
more, extending the viability of acute slices in culture 
could facilitate AAV infection and further molecular 
interventions. The  investigation of  the stem cell-like 
properties of BCs, particularly those that can be cul-
tured in vitro from FCD IIb surgical specimens, offers 

valuable insights into their molecular dynamics, sign-
aling pathways, and differentiation potential. Another 
potential direction worth  exploring is the use of  BC-
specific tracers, which could have immediate clinical 
applications in pinpointing epileptic foci and guiding 
targeted therapy.

The development of advanced methodologies, such as 
sophisticated in  vitro models, organoids, and human-
ized mouse models, holds great promise in elucidating 
the mechanisms underlying BC genesis and progres-
sion. These approaches have the potential to enhance 
our understanding of the specific etiology and patho-
physiology of MCDs involving BCs.

Fig. 4  Future perspectives of BCs-containing MCDs study. Future studies on balloon cells (BCs) can be approached from multiple perspectives. 
Firstly, surgically resected fresh BCs-containing brain tissue can be rapidly frozen and analyzed using single-cell/spatial transcriptional 
and metabolomic techniques. Secondly, this fresh brain tissue can be used to prepare acute slices suitable for patch-seq analysis, enabling 
the integration of electrophysiological, morphological, and single-cell transcriptional data in BCs. Additionally, given the time-sensitive nature 
of acute slice experiments, further slices containing BCs can be cultured in an incubator for extended periods, allowing for adeno-associated 
virus (AAV) infection and other molecular manipulations. Finally, BCs isolated from fresh brain tissue can be cultured to study their differentiation 
induction and the explore potential therapeutic interventions. These methodologies aim to address critical yet unresolved questions 
regarding the heterogeneity and stem cell-like properties of BCs, their origins, and their role in the development of epilepsy
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